A primal-dual regularized interior-point method for semidefinite programming

نویسندگان

  • A. Dehghani
  • J.-L. Goffin
  • Dominique Orban
چکیده

Interior-point methods in semidefinite programming (SDP) require the solution of a sequence of linear systems which are used to derive the search directions. Safeguards are typically required in order to handle rank-deficient Jacobians and free variables. We generalize the primal-dual regularization of Friedlander and Orban (2012) to SDP and show that it is possible to recover an optimal solution of the original primal-dual pair via inaccurate solves of a sequence of regularized SDPs for both the NT and dual HKM directions. Computationally, a sparse LDLT factorization may be used on a sparse augmented system instead of the more costly symmetric indefinite factorization. Benefits of our approach include increased robustness and a simpler implementation. Our method does not require the constraints to be linearly independent and does not assume that Slater’s condition holds. We report numerical experience on standard problems that illustrate our findings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

ABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming

 Abstract  We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

An interior point method with a primal-dual quadratic barrier penalty function for nonlinear semidefinite programming

In this paper, we consider an interior point method for nonlinear semidefinite programming. Yamashita, Yabe and Harada presented a primal-dual interior point method in which a nondifferentiable merit function was used. By using shifted barrier KKT conditions, we propose a differentiable primal-dual merit function within the framework of the line search strategy, and prove the global convergence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2017